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A Mathematical and Sociological Analysis
of Google Search Algorithm ∗

Ming-Jun Lai† Dawn Robinson‡

January 16, 2013

Abstract

Google search algorithm for finding relevant information on-line based on keywords, phrases,
links, and webpages is analyzed in the mathematical and sociological settings in this article. We shall
first survey mathematical study related to the Google search engine and then present a new analysis
for the convergence of the search algorithm and a new update scheme. Next based on sociological
knowledge, we propose to use in- and out- linkages as well as use the second order linkages to refine
and improve the search algorithm. We use the sociology to justify our proposed improvements and
mathematically prove the convergence of these two new search algorithms.

1 Introduction

Due the huge volume of documents available through the world wide web, a search engine or similar ser-
vice is now absolutely necessary in order to find relevant information on-line. About 12 years ago, Google,
Yahoo and other companies started providing such a service. It is interesting to know the mathematics of
computational algorithms behind these search engines, in particular, the Google search engine which is
so successful nowaday. Many mathematicians and computer scientists, G. Golub and his collaborators,
Brezinski and his collaborators, Langville and Meyer, among other pioneers worked on the mathematics
of the Google matrix and its computation. See [25], [16], [9], [8], [31], [32] and a recent survey in [2].
The search algorithm also becomes a very useful tool in many Web search technologies such as spam
detection, crawler configuration, trust networks, and etc.. and find many applications in [12], [13] and
etc.. Today, it is the most used computational algorithm in the world. More and more websites such as
Facebook, Amazon, Netflix, and etc.. use similar search algorithms for various purposes.

As almost all people on the earth use the Google search once or several times daily, it is interesting
to see if the search results make any sense in sociology. How could it be adjusted to be more effective
sociologically. We divide this article into two parts. We shall first present a mathematical description of
the computational algorithm behind the Google search engine and summarize the recent studies related
to the algorithm. Then we present a sociological analysis. Based on the sociology, we propose two
modifications in order to be more effective.
∗This research is supported by Army Research Office Grant # W911NF–11–1–0322.
†mjlai@math.uga.edu. Department of Mathematics, The University of Georgia, Athens, GA 30602.
‡sodawn@uga.edu. Department of Sociology, The University of Georgia, Athens, GA 30602.
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2 Mathematical Analysis

In this section we first survey the mathematical studies related to the Google search algorithm. Then
we present a mathematical analysis which is new to the best of our knowledge. Mainly we study its
convergence as it is an iterative method since the Google matrix is of huge size so that any direct method is
impossible. Then we shall establish the convergence, present the rate of convergence and a local updating
scheme.

2.1 Google Search Engine

During each search, after entering a key word or key words, the Google search engine will produce a
ranking vector called PageRank. It is a vector of huge size (several billion entries) although almost all
entries are zero in general. Each entry of the vector presents a webpage. Nonzero value in an entry is a
weighting factor deciding how important the page related to the key word(s) just entered. The importance
is determined by popularity. The ideas for this computational algorithm have been reported as early as
1997–1998 by Page in [37] and Brin and Page in [10]. See also [33] for explanation of the ideas. The
algorithm mainly computes a numerical weighting (called pagerank) to each webpage or each element
in a hyperlinked set of documents. Pageranks reflect the Google’s view of the importance of webages
among more than several billion webpages. It is a pragmatic approach to improve search quality by going
through the collective intelligence of the web to determine a page’s importance.

Let v be a vector of RN with N ≥ 8 billion. Any unit vector in RN is associated with a webpage.
Mathematically, Pagerank is a probability function of vectors. For a page v, let P (v) be the PageRank of
v. By a stroke of the ingenious, Brin and Page thought that P (v) is the weighted sum of the PageRanks
of all pages pointing to v. That is,

P (v) =
∑
u∈Av

P (u)`(u,v), (1)

where Av is the collection of all pages connected to v and `(u,v) ∈ [0, 1] be a weight dependent on the
number of links from page u to the other pages. More precisely, let L(u) be the number of linkages from
u and then define `(u,v) = 1/L(u) if u ∈ Av and 0 otherwise for any other page u. Such a definition
is cyclic. Also, a web surfer may get bored and abandons the current search by teleporting to a new page.
By a second stroke of ingenious, Brin and Page introduced a damping factor and modified the Pagerank
function P (v) to be

P (v) = d
∑
u∈Av

P (u)`(u,v) +
1− d
N

, ∀unit vector v ∈ RN , (2)

where d ∈ (0, 1) is a damping factor. It indeed leads to a convergent algorithm and the PageRank P will
be unique defined. In summary, we have

• PageRank
P = [P (v1), · · · , P (vN )]>. (3)

• M = [`(vi,vj)]1≤i,j≤N be the adjacency matrix of size N ×N with convention `(vi,vi) = 0.

• 1 = [1, 1, · · · , 1]> ∈ RN ;
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• The Google Matrix

G = dM +
1− d
N

1 · 1>. (4)

which is a stochastic matrix, where d > 0 is a damping factor. In Google search engine, d = 0.85.

To compute the PageRank P, the Google search engine computes: starting with an inital vector
P1, e.g.,P1 = 1/N ,

Pk+1 = GPk, ∀k = 1, 2, · · · (5)

until the difference of Pk+1 and Pk within a given tolerance.
For an elementary explanation of Google computational algorithm, see a monograph [33]. Many

mathematical problems arise from the algorithm. For example, does the computation (5) converge and
what is the convergence rate? Is the computation stable? How to speed up the iterations in (5)? How to
do the computation in parallel? Can we have d = 1? How can we add or delete a page web from the
PageRank function?

2.2 Summary of Mathematical Results

The major question for the computational algorithm (5) in the previous subsection is the convergence rate
of the iterations in (5). The iteration is a power method. The convergence is dependent on the second
largest eigenvalue as the first largest eigenvalue is 1 (cf. [27]). The value of the second largest eigenvalue
or eigenvalues is the damping factor as shown first in [24]. This fact is later established in [39] by using
Jordan canonical form of the Google matrix. It was also proved in [14] where the researcher showed
that the second largest eigenvalue is the dampling factor even the Google matrix has more than 1 largest
eigenvalues. It is also proved in [30]. In [11], the searcher interpreted the PageRank algorithm as a power
series which leads to a new proof of the several known results about the PageRank, e.g.., the convergence
rate is the exactly the damping factor by [24] and presented a new inside about PageRank which is the
probability that a specific type of random surfer ends his walk at the page. Usually, the random surfer is
assumed to be uniform distribution suggested by Page and Brin. In fact, all the properties of the PageRank
hold for arbitrary probability setting. We shall present another proof in the next subsection

A second question is if the computation is stable or what the condition number of the Google matrix
is. In [18], the researchers viewed the PageRank vector to the stationary distribution of a stochastic matrix,
the Google matrix. They analyzed the sensitivity of PageRank to changes in the Google matrix, including
addition and deletion of links in the web graph and presented error bounds for the iterates of the power
method and for their residuals. See also various properties in [9] including the condition number of the
Google matrix.

A central question is how to accelerate the Google computational algorithm. There are several ap-
proaches.

• Extrapolation In [8], the researchers studied the computation of the nonnegative left eigenvector
associated with the dominant eigevalue of the PageRank matrix and proposed to use extrapolation
methods to approximate the eigenvector. Furthermore, in [9], the researchers proposed some ac-
celeration methods due to the slow convergence of the Power method for the PageRank vector.
The acceleration metod can be explained as the method of Vorobyev moments and Krylov sub-
space method. In addition, many properties about the Google matrix and PageRank vectors were
presented.
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• Sparsity Split In [40], these Chinese researchers use the sparsity of the hyperlink matrix (one of the
two matrices in Google Matrix) and proposed a linear extrapolation to optimize each iteration in
the Power method for the computation of PageRank and reduction of the storage space. The idea is
simple and the engineers in Google may have already implemented.

• Iterative Solutions The iteration in (5) can be reinterpreted as a linear system to be given in (8). As
explained in [15], the Google matrix is very large, sparse and non-symmetric. Solution of the linear
system by a direct method is not feasible due to the matrix size. Many iterative solutions such as
Gauss-Jacobi iterations, Generalize Minimum Residual (GMRES), Biconjugate Gradient (BiCG),
Quasi-Minimal Residual (QMR), Conjugate Gradient Squared (CGS), Biconjugate Gradient Sta-
bilized (BiCGSTAB), Chebyshev Iterations. The researchers proposed to use the parallel Block
Jabobi iteration with adaptive Schwarz preconditioners.

• Parallel Iteration In [15], the researchers described a parallel implementation for PageRank com-
putation and demonstrated that the parallel PageRank computing is faster and less sensitive to the
changes in teleportation.

• Lumping Dangling Nodes In [19], the researchers lumped all of the dangling nodes together into
a single node and the Google matrix can be reduced. They showed that the reduced stochastic
matrix has the same nonzero eigenvalues as the full Google matrix and the convergence rate is the
same when the Power method is applied. In [34], the researchers further reduced the Google matrix
by lumping more nodes which are so-called weakly nondangling nodes together and the reduced
matrix has the same nonzero eigenvalues as the Google matrix.

• Distributed Randomized Algorithm In a series of papers ([20], [21], [22], the researchers applied
distributed randomized algorithm for PageRank. The idea is to let each page compute its own
value by exchanging information with its linked pages. The communication among the pages is
randomized so as to make it asynchronous. The communication among pages in the sense that data
transmitted over the links is received correctly or could have some noises.

There are several other improvements. For example,
One is to update the PageRank. In [33], the researchers considered the PageRank vector to be an

state of homogeneous irreducible Markov chain and the chain requires updating by altering some of its
transition probabilities or by adding or deleting some states. They proposed a general purpose algorithm
which simultaneously deals with both kinds of updating problems and proved its convergence. We shall
present another approach for local updating to be discussed in the next subsection.

Another improvement is to distinct the webpage with equal rankings. In [35], the researchers proposed
an idea to organize the search result produced by the PageRank where several pages have the same rank
score so that the surfer can get more relevant and important results easily. Their idea is to add a weight to
each page.

We finally remark that besides the PageRank algorithm, there are many other search algorithms avail-
able. For example, Kleinberg’s HITS algorithm is a classic Hypertext Induced Topics Search (HITS)
algorithm invented by Kleinberg (cf. [28]). Kleinberg viewed that most pages are a hub and authority,
i.e., a general page not only points to other pages and also receives points from other pages. Again, the
HITS algorithm uses the power method to the hub weight vector and authority weigh vector. See [33] and
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[6] for more explanation. For another example, Yahoo uses another type of algorithms. See last section
of this paper.

In summary, the study of Google computational algorithm requires many mathematical tools such
that graph theory (cf. [?]), random walks and Markov chains (c.g., [4]. [33]), numerical analysis (cf.
[16]), [15], [8]), stochastic matrices (cf. [18]), networks theory (cf. [6]), etc.. See [2] for a survey
of recent techniques for on link-based ranking methods and the PageRank algorithm to find the most
relevant documents from the WWW.

2.3 Our Convergence Analysis

We see that P (v) ≥ 0. We now claim that P (v) ≤ 1. In fact, we can prove the following

Theorem 2.1 Let vi, i = 1, · · · , N be the standard unit vectors in RN . Then the PageRanks P (vi), i =
1, · · · , N satisfy

N∑
i=1

P (vi) = 1.

Proof. Indeed, as in the definition (2), P (vi), i = 1, · · · , N are dependent on each other. We recall

P = [P (v1), · · · , P (vN )]>

is the PageRank vector in RN . We can see that

N∑
i=1

`(vj ,vi) = 1 (6)

for j = 1, · · · , N . We call `(vi,vj) adjacency functions. It follows from (2), we can write

P =
1− d
N

1+ dMP, (7)

where M = [`(vi,vj)]1≤i,j≤N be the adjacency matrix of size N ×N with convention `(vi,vi) = 0 and
1 = [1, 1, · · · , 1]> ∈ RN . Hence, we have

N∑
i=1

P (vi) = 1>P = N
1− d
N

+ d1>MP

= 1− d+ d1>P = 1− d+ d

N∑
i=1

P (vi),

where we have used (6) to have 1>M = 1>. That is, we have (1 − d)
N∑
i=1

P (vi) = 1 − d and hence,

N∑
i=1

P (vi) = 1 since d 6= 1. This completes the proof.
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The PageRank algorithm offers two ways to calculate the PageRank vector P: one is by algebraic
method and the other by an iterative method. Indeed, by (7), we have

(I − dM)P =
1− d
N

1 or P =
1− d
N

(I − dM)−11, (8)

where I is the identity matrix of size N × N . This algebraic method will be well-defined if I − dM is
invertible. Indeed, we have

Theorem 2.2 Let I be the identity matrix and M be the adjacency matrix defined above. If d ∈ (0, 1),
then

I − dM

is invertible.

Proof. We first recall a matrix A = [aij ]1≤i,j≤N is diagonally dominant if

|aii| >
N∑
j=1
j 6=i

|aij |

for all i = 1, · · · , N . It is easy to see that (I − dM)> is diagonally dominant matrix by using (6) with
d < 1. It is known (cf. [27], p. 178) that every diagonally dominant matrix is nonsingular, and hence is
invertible. So is I − dM .

Certainly, finding the inverse (I − dM)−1 is expensive in computation. An easy approach is to use an
iterative method, for example, power method. Starting with P0 = 1/N , we iteratively compute

Pk = GPk−1 =
1− d
N

1+ dMPk−1 (9)

by using Theorem 2.1 for k = 1, 2, · · · ,. We now show that Pk, k ≥ 1 converge. Let us use the `1 norm
for matrices to measure the errors Pk −P. Recall the `1 norm for matrix A with A = [aij ]1≤i,j≤N is

‖A‖1 = max
j=1,··· ,N

N∑
i=1

|aij |.

Then we have

Theorem 2.3 Let P be the PageRank vector defined by the algebraic method. For all k ≥ 1,

‖Pk −P‖1 ≤ Cdk,

where C is a positive constant.

Proof. It is easy to see from (7) and the definition (9) of iterations that

Pk −P = dM(Pk−1 −P) = · · · = (dM)k(P0 −P).

Thus, letting C = ‖P0 −P‖1,

‖Pk −P‖1 ≤ dk‖Mk‖1C ≤ Cdk‖M‖k1.

6



Finally we note that ‖M‖1 = 1 by using (6) to complete the proof.
We remark that the convergence of Pk to P was shown numerically in [37] for full size and a half

size link databases. The rates of convergence are nearly the same for these two sizes. Also in [23],
the contributor(s) of this wiki page uses the power method for the leading eigenvector to explain the
convergence of the iterative method above without giving a convergence rate as it is based on the ratio
of the second largest and the largest eigenvalues of the Google matrix. The second eigenvalue of the
Google matrix was studied in [24] where the rate of convergence of PageRank was determined to be 0.85,
the damping factor d. As mentioned in a previous section, the convergence rate has been determined by
several methods already. Our result in Theorem 2.3 gave another proof. It is much simpler and easier
fashion than the study in [24].

2.4 A New Local Update Scheme

We discuss how to do local updates. That is, in practice, webpages are updated constantly in the sense
that the number L(vi) of links from webpage vi changes very often, usually increases. A new adjacency
matrixM is needed updated everyday. Instead of using an updated matrixM to compute a new PageRank
vector P for all components, we discuss an approach to update partial components of P. We need the
following well-known formula:

Lemma 2.1 (Sherman-Morrison’s formula,1949) If A is invertible and x,y are two vectors such that
y>A−1x 6= −1, then A+ xy> is invertible and

(A+ xy>)−1 = A−1 − A−1xy>A−1

1 + y>A−1x
.

Assume that we have an updated `+(vi,vj) for a fixed integer j and M+ be the updated adjacency
matrix. Let n = n(j) and n+ = n+(j) be the previous and updated numbersL(vj) of links from webpage
vj . Let us forcus the case that only more webpage links are added to the existing links from the webpage
vj . In this case n+ > n. Hence, we have

M+ =M + xjv
>
j ,

where xj = [`+(vi,vj)− `(vi,vj), i = 1, · · · , N ]> with `+(vi,vj) is the updated version of `(vi,vj)
and

‖M −M+‖1 = 1− n/n+ +
n+ − n
n+

≤ 2
n+ − n
n+

.

We shall use P+ to be the updated PageRank vector satisfying

P+ =
1− d
N

1+ dM+P+.

By Theorem 2.2, we know I − dM+ is invertible. By the inverse formula in Lemma 2.1, we know
v>j (I − dM)−1xj 6= −1 and hence, letting α = 1 + v>j (I − dM)−1xj 6= 0,

(1− dM+)
−1 = (1− dM)−1 − (I − dM)−1xjv

>
j (1− dM)−1/α. (10)
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It follows

P+ = (1− dM+)
−1 1− d

N
1

= (1− dM)−1
1− d
N

1− 1

α
(I − dM)−1xjv

>
j (1− dM)−1

1− d
N

1

= P− 1

α
(I − dM)−1xjv

>
j P

= P− Pj

α
(I − dM)−1xj . (11)

where Pj is the jth component of vector P. Let us write ε =
Pj

α
(I − dM)−1xj for the update for P to

obtain P+ and we next discuss how to find the update efficiently as solving (I − dM)−1xj is expensive
in computation.

We need the following (cf. [27], p. 198)

Lemma 2.2 (Neumann Series) If A is an n× n matrix and ‖A‖1 < 1, then I −A is invertible and

(I −A)−1 =
∞∑
k=0

Ak.

As shown before ‖M‖1 = 1 and d ∈ (0, 1), letting A = dM in Lemma 2.2 above, we have

(I − dM)−1xj =
∞∑
k=0

dkMkxj .

Algorithm 2.1 (A Single Update) Choose an integer K large enough such that dK is within a given
tolerance. Start with y = xj and for k = 1, · · · ,K − 1, we compute

y = dMy + xj .

Then writing y = [y1, · · · , yN ]>, we let α = 1+ yj and ε = (Pj/α)y. Thus, by (11), P+ ≈ P− ε within
the given tolerance.

The above algorithm leads to sequentially updating P, i.e. update one webpage or one keyword or
one document at a time. See Remark 5.1 for a parallel update scheme.

3 Sociological Analysis

Sociologists have studied the linkages, networks for a long time. Many concepts of centrality measures
have been created. In [7], Bonscich proposed a measure of centrality c(α, β) with normalization factor α
and parameter β which is a function of unit vectors of RN . For each unit vector, say, vi,

ci(α, β) =
∑
j

(α+ βcj(α, β))Rij (12)

8



where Rij is an entry of matrix relation R which may not be symmetric and main diagonal elements are
zero. In matrix notation

c(α, β) = α(I − βR)−1R1. (13)

See page 1173 of [7]. If we use the adjacent matrix for R and normalization factor α = (1 − d)/N , we
see that (12) is just (2) when β = d, the damping factor. If α = (1− d)/N and R1 = 1, we can see that
(13) is the same as the equation on the right-hand side of (8). Using these two parameters, the PageRank
is just c(α, β). According to Bonacich, when R is asymmetric, e.g., R = M , c(α, β) measures prestige
if β > 0. This gives a sociological justification that the Google’s PageRank does measure the important
relevance scores for each webpage.

Note that when R is symmetric, c(α, β) measures centrality. Also, as in [7], β can be negative. For
example, in a communication network,

As pointed out by Bonacich, his measure c(α, β) seems hopelessly ambiguous,,

4 Improved Search Algorithms

We now explain the improvements discussed in the previous section in mathematical terminology. Recall
all the notations and definitions in a previous section. We use page to denote a webpage, a keyword or
phrase, a document, etc..

4.1 Convergence Analysis of In- and Out-Linkage Search Algorithm

For each page v, Av is the collection of all pages connected from v. We now search all u ∈ Av to see if
u connects to v also. We denote by A+

v the collection of such page u ∈ Av. Note that A+
v could be an

empty set if v is an unknown page to the world. Anyway, A+
v ⊂ Av is a subset. Let

L̃(v) = #(Av) + #(A+
v ), (14)

where #(A) stands for the number of entries in set A. It is called the cardinality of A. We define the new
adjacency entry

˜̀(v,u) =

1/L̃(v), if u is not connected to v from u

2/L̃(v), if u is connected to v

0 otherwise.

(15)

According to our Plan 1, the new PageRank function P̃ (v) is now defined by

P̃ (v) = d
∑
u∈Av

P̃ (u)˜̀(u,v) + 1− d
N

, ∀ any unit vector v ∈ RN , (16)

where d ∈ (0, 1) is a damping factor. To find the value of P̃ (v), we use similar iterative algorithm as in
Section 2. Let

M̃ =
[˜̀(vi,vj)

]
1≤i,j≤N

, (17)

We are now ready to define

9



Algorithm 4.1 (In- and Out-linkage Search Algorithm) Starting from P̃0 = 1/N , we iteratively com-
pute

P̃k =
1− d
N

1+ dM̃P̃k−1, ∀k = 1, 2, , .... (18)

For convenience, we write P̃ to the new PageRank vector of all pages vi,∈ RN , i = 1, · · · , N .
Based on the analysis in Section 2, we can conclude the following

Theorem 4.1 Let P̃ be the PageRank vector defined above. For all k ≥ 1,

‖P̃k − P̃‖1 ≤ Cdk, ∀k ≥ 1,

where C is a positive constant independent of k.

4.2 Convergence Analysis of Second Order linkage Search Algorithm

Next we study our improved search algorithm 2. In addition to use A+
v , we count the links from u ∈ Av.

That is, we look atAu. More number of links inAu, the less contribution to u according to the sociological
justitication in the previous section. Thus, we define

n(v) = #(Av) +
∑
u∈Av

1

#(Au)
(19)

and

̂̀(u,v) =

1 + 1

#(Au)

n(v)
, if u ∈ Av

0 otherwise.
(20)

It is easy to see

Lemma 4.1 For any page v
N∑
j=1

̂̀(vj ,v) = 1. (21)

Thus the new PageRank function P̂ (v) is now defined by

P̂ (v) = d
∑
u∈Av

P̂ (u)̂̀(u,v) + 1− d
N

, ∀ any unit vector v ∈ RN , (22)

where d ∈ (0, 1) is a damping factor. To find the value of P̂ (v), we do the iterations as before. Letting

M̂ =
[̂̀(vi,vj)

]
1≤i,j≤N

, (23)

Algorithm 4.2 (Second Order linkage Search Algorithm) Starting from P̂0 = 1/N , we iteratively
compute

P̂k =
1− d
N

1+ dM̂P̂k−1, ∀k = 1, 2, , .... (24)

10



Similarly, we write P̂ to the new PageRank vector of all pages vi,∈ RN , i = 1, · · · , N .
Based on the analysis in Section 2, we can conclude the following

Theorem 4.2 Let P̂ be the PageRank vector defined above. For all k ≥ 1,

‖P̂k − P̂‖1 ≤ Cdk, ∀k ≥ 1,

where C is a positive constant independent of k.

5 Yahoo Search Engine

Yahoo search engine is quite different from the Google search engine conceptually and hence, computa-
tionally. The following description of the Yahoo search engine is based on [38].

Yahoo emphasizes on the similarity of any two webpages, two documents, or two web hubs. There are
many sources of similarity information including link similarity, text similarity, multimedia component
similarity, click through similarity, title similarity, URL similarity, cache log similarity, and etc.. For
simplicity, let us consider the search engine for documents. Even for documents, there are many categories
of similarity such as title similarity, author similarity, text similarity and etc.. For example, the text
similarity is the dot product of two vectors which are the frequency usages of various words. That is,
suppose that two documents use totalM words. For one document, let x be the vector of lengthM whose
each entry is the frequency usage of a word in the document. Similar for vector y for the other document.
Then x · y denote the similarity between these two documents.

Suppose that the base set of all on-line documents contains N documents. The global similarity
matrix W = [wij ]1≤i,j≤N with wij ≥ 0 representing the strength of the similarity between document i
and document j. Assume that wij ≤ M for all i, j = 1, 2, · · · , N . Suppose that there are K categories
of various similarities. For each k = 1, · · · ,K, let x(k) = [x1k, x2k, · · · , xNk] ∈ RN be a vector with
nonnegative entries satisfying

N∑
i=1

xik = 1.

It is a vector of scores or confidence values for all documents with respect to the kth category of similarity.
Note that the global similarity matrix combines all sources of similarity information together. Thus,
wij = f(wij(1), · · · , wij(K)) with wij(k), k = 1, · · · ,K being the similarity between document i and
document j with respect to the category k. Yahoo considers a global similarity objective function

P (x) =

K∑
k=1

x(k)>Wx(k) =
∑
k=1

N∑
i,]=1

xikwijxjk.

Yahoo engine will have to first do data preparation or preprocessing by generating the global similarity
matrices W based on training and learning and then compute the matrix x to maximize the objective
function value by solving the following maximization problem:

max
x(k)∈C
1≤k≤K

P (x), (25)
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where x(k) = [x1k, x2k, · · · , xNk]
> and C = {(x1, x2, · · · , xn), xi ≥ 0, i = 1, · · · , N,

∑N
i=1 xi = 1}

is a convex set in RN . This solution matrix x determines the search results according to the numerical
values in the entries of x. For document i, the document j is most similar to document i if the distance
between vectors xik, k = 1, · · · ,K and xjk, k = 1, · · · ,K is the smallest.

Since P (x) is a quadratic function of x and hence continuous, P (x) achieves its maximum within the
bounded set C. It is easy to see

Lemma 5.1 Let M = max1≤i,j≤nwij be the maximum of the entries of the global similarity matrix.
Then P (x) ≤MK for all x(k) ∈ C, k = 1, · · · ,K.

Proof. Since
∑n

i=1 xi = 1 and xi ≥ 0 for all i = 1, · · · , N , we have

P (x) =
K∑
k=1

∑
ij

xikwij(k)xjk ≤
K∑
k=1

∑
ij

Mxixj =
K∑
k=1

M
n∑

i=1

n∑
j=1

xjkxik =MK.

However, P (x) may achieve its maximum at several vectors. For example, letting K = 1, N = 3 and
W be the identity matrix of size 3× 3, we know the maximum is 1 when x = (1, 0, 0), (0, 1, 0), (0, 0, 1).
Certainly, this is just a pathological example as no one uses an identity matrix for the global similarity
matrix. The algorithm Yahoo uses produces a unique maximizer each time as it will be discussed below.

To solve the maximization problem, Yahoo uses the Growth Transformation algorithmI—(GTA). The
most important advantages of this algorithm are that it guarantees a monotonic increase sequence of
the objective function values and the computation is stable as each step is a convex combination of the
previous step. For simplicity, we assume that K = 1. In fact, Yahoo engine does a loop to go through
each category using the following GTA.

Algorithm 5.1 (the Growth Transformation) Starting with a trained vector x(1) inC, for k = 1, 2, · · · ,,
one computes

x
(k+1)
j =

x
(k)
j

∂
∂xj

P (x(k))

N∑
i=1

x
(k)
i

∂

∂xi
P (x(k))

(26)

for j = 1, · · · , N .

This algorithm is mainly based on an inequality proved in [5]. For convenience, we present a short
version of the proof due to the degree d = 2.

Lemma 5.2 (Baum and Eagon, 1967) Let P (x) be a homogeneous polynomial of degree d with nonneg-
ative coefficients. Let x ∈ C the convex defined above. For any x ∈ C, let

y = (y1, · · · , yN ) with yj =
xj

∂
∂xj

P (x)

N∑
i=1

xi
∂

∂xi
P (x)

, j = 1, · · · , N.

Then P (y) > P (x) unless y = x.
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Proof. For convenience, let us use P (x) = x>Wx to prove this inequality, i.e., we assume that d = 2.
Clearly, P is a homogeneous polynomial of degree d = 2. Since the entries of W are nonnegative, P (x)
satisfies the assumptions of this lemma. Note that

∂

∂xi
P (x) = 2

n∑
j=1

wijxj

and
N∑
i=1

xi
∂

∂xi
P (x) = 2P (x).

Thus, we first use Cauchy-Schwarz’s inequality and then the geometric and arithmetic mean inequality to
have

P (x) =
∑

i,j=1,··· ,n
wijxixj =

n∑
i,j=1

(wijyiyj)
1/3

(
w

2/3
ij xixj

1

(yiyj)1/3

)

≤

 n∑
i,j=1

wijyiyj

1/3 n∑
i,j=1

wijxixj

(
xixj
yiyj

)1/2
2/3

≤

 n∑
i,j=1

wijyiyj

1/3 n∑
i,j=1

wijxixj
1

2

(
xi
yi

+
xj
yj

)2/3

Since yi = xi

n∑
j=1

wijxj/O(x), we have

n∑
i,j=1

wijxixj
1

2

(
xi
yi

+
xj
yj

)
=

1

2

n∑
i,j=1

wijxixj(
P (x)∑n
j=1wijxj

+
P (x)∑n
i=1wijxi

)

=
P (x)

2

 n∑
i=1

xi

n∑
j=1

wijxj/(

n∑
k=1

wikxk) +

n∑
j=1

xj

n∑
i=1

wijxi/(

n∑
k=1

wkjxk)


=
P (x)

2

 n∑
i=1

xi +

n∑
j=1

xj

 = P (x).

since x ∈ C. Combining the above discussion together, we have

P (x) ≤

 n∑
i,j=1

wijyiyj

1/3

(P (x))2/3 .

It thus follows that P (x) ≤
n∑

i,j=1

wijyiyj = P (y). Note that from the above discussion, the inequalities

become equalities for Cauchy-Schwarz’s inequality and geometric and arithmetic mean inequality when
y = x. Therefore, we have an strictly inequality when y 6= x. We have thus completed the proof.
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With this lemma, we are able to show the convergence of Algorithm 5.1. Due to the monotonically
increasing property of P (x(k)) and the boundedness of P (x) by Lemma 5.1, we see that P (x(k)) is
convergent to P (x∗) for some point x∗. In practice, the iterations may end in a finite steps. Note that for
x ∈ C, ∇P (x) 6= 0 and each component of ∇P (x) is strictly positive. Thus, objective function values
are increasing until P achieves its maximum. In this case, by Lemma 5.2, we have x(n+1) = x(n) for
some integer n.

Also, x(k), k ≥ 1 are all in C and hence, are bounded. It follows that there exists a convergent
subsequence. Due to the nonuniqueness of the maximizers, we can not conclude the convergence of the
whole sequence.

Suppose that W is a positive definite, P (x) is a convex function. when x and y defined in Lemma 5.2
are close enough, we have

∇P (x) · (y − x) ≥ 0 (27)

since P (y) > P (x). It follows that

P (y)− P (x) = P (y − x) + 2(y − x)>Wx = P (y − x) + (y − x)>∇P (x) ≥ λn‖y − x‖2, (28)

where λn denotes the smallest eigenvalue of W and ‖z‖ denotes the `2 norm of vector z ∈ Rn. Therefore
we have

Theorem 5.1 Suppose thatW is symmetric and positive definite. LetM be the largest value of the entries
of W . Let λn be the smallest eigenvalue of W . Let x(k), k ≥ 1 be the sequence from Algorithm 5.1. Then
there exists a convergent subsequence, say x(mk), k ≥ 1 which converge to a maximizer x∗ and satisfy

∞∑
k=1

‖x(mk+1) − x(mk)‖2 ≤ C <∞,

where C is a positive constant dependent on λn and M .

Proof. We have discussed that the sequence x(k) has a convergent subsequence. For convenience, let us
say x(k) converges to x∗. Thus, x(k+1)−x(k) will be very close when k ≥ K0 for a positive inteeger K0.
Thus,

P (x(k+1))− P (x(k)) ≥ P (x(k+1) − x(k)) ≥ λn‖x(k+1) − x(k)‖2

by using (28) and (27). Hence,

λn
∑
k≥K0

‖x(k+1) − x(k)‖2 ≤M − P (x(K0)) ≤M <∞.

This completes the proof.
Although Yahoo does not discuss much mathematics behind their generating the global similarity

matrix W , one approach called matrix completion can be used. The matrix completion is a research topic
in mathematics which is recently actively studied. It starts from the well-known Netflix problem. Indeed,
Netflix (cf. [36]) made available publicly such a set of data with about 105 known entries of its movie
rating matrix of size about 5 × 105 times 2 × 105 and challenged the research community to complete
the movie recommending matrix with root mean square error less than 0.8563. This matrix completion
problem has been studied actively ever since. We refer the following papers, [26], [41], and [29] for
in-depth study and the references therein.
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6 Remarks

We have the following remarks in order:

Remark 6.1 We will not discuss other link-based ranking systems for webpages such as the HITS algo-
rithm invented by Jon Kleinberg (used by Ask.com), the IBM CLEVER project, IDD Information Services
designed by Robin Li who found Baidu in China, the TrustRank algorithm and etc..

Remark 6.2 Next we discuss how to in parallel update the RageRank simultaneously for multiple web-
pages and keywords and names of documents at a time. We need the following

Lemma 6.1 (Woodbury matrix identity) Suppose thatA is invertible andC is also invertible. IfA+UCV
is invertible, then

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

The above formula can be rewritten in the following form

Lemma 6.2 Suppose that U and V are unitary matrices and C is a diagonal matrix containing nonnega-
tive values as entries. If A+ UCV is invertible, then

(A+ UCV >)−1 = A−1 − (V C†U>A+ I)−1A−1, (29)

where C† is the pseudo-inverse of C.

Proof. First of all, we have

(A+ UCV >)−1 = A−1 −A−1U(C† + V >A−1U)−1V >A−1

by using the same direct proof for Woodbury formula. Furthermore, we use the invertibility of U , V and
A to rewrite the right-hand side of the above formula to get the equality in (29).

For the Google matrix A = I − dM and UCV > = −d
k∑

j=1

xjv
>
j , we know most entries of matrix

k∑
j=1

xjv
>
j of size N × N are zero. There is a nonzero block which is of size nk × nk with integer

nk << N if k is not very big. For convenience, let us say the principal block of size nk × nk are

nonzero. It is easy to find the singular value decomposition of this block, −
k∑

j=1

xjv
>
j = U1C1V

>
1 . Then

let U = diag(U1, IN−nk
), C = diag(C1,0N−nk

) and V = diag(V1, IN−nk
), where IN−nk

is the identity
matrix of size N − nk and 0N−nk

is zero block of size N − nk. In general C1 is not invertible. We can
write it in the following form: if C1 is of rank rk < nk,

C1 =

[
C11 0
0 0

]
,
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where C11 is diagonal matrix containing all the nonzero singular values of −
k∑

j=1

xjv
>
j .

From (29), we need to find (V C†U>A+ I)−1. First, we have

V C†U>A =

[
V1 0
0 IN−nk

] [
1
dC
−1
11 0
0 0N−rk

] [
U>1 0
0 IN−nk

] [
Ink
− dM11 −dM12

−dM21 IN−nk
− dM22

]
.

for a matrix C̃1 which is of size nk × nk. Then we have

V C†U>A =

[
1
d C̃1 0
0 0N−nk

] [
Ink
− dM11 −dM12

−dM21 IN−nk
− dM22

]
,

where the Google matrix M is written in terms of the same division of blocks as V C†U>. Furthermore,

V C†U>A+ I =

[
1
d C̃1(Ink

− dM11) + Ink
−C̃1M12

0 IN−nk

]
=

[
1
d C̃1 0
0 IN−nk

]([
dC̃−11 − dM11 −dM12

0 0N−nk

]
+ I

)
.

Finally, we have

(V C†U>A+ I)−1 =

(
I + d

[
C̃†1 −M11 −M12

0 0N−nk

])−1 [
dC̃†1 0
0 IN−nk

]
.

It follows the updated PageRank vector is

P+ = (I − dM − dUCV >)−1 1− d
N

1

= (I − dM)−1
1− d
N

1−
(
I + d

[
C̃†1 −M11 −M12

0 0N−nk

])−1 [
dC̃†1 0
0 IN−nk

]
(I − dM)−1

1− d
N

1

= P−
(
I + d

[
C̃†1 −M11 −M12

0 0N−nk

])−1 [
dC̃†1 0
0 IN−nk

]
P.

We are now ready to present an algorithm for multiple updates.

Algorithm 6.1 (Multiple Updates) Choose an integer K large enough such that dK is within a given
tolerance. We first compute U1, C1, V1 as explained above. Then compute C̃1. For the current PageRank
vector P, modify it to be

P̃ =

[
dC̃†1 0
0 IN−nk

]
P

and then compute the following iterations

P+ ≈ P−
K∑
j=0

dj
[
C̃†1 −M11 −M12

0 0N−nk

]j
P̃.
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Similarly we can discuss how to compute M+ efficiently when adding a new webpage/document/link
to the database. We omit the detail here.

Remark 6.3 The importance of webpages related to each keyword, document or webpage can also be
calculated based on the number of hits from the world. However, this is very easily be scrolled up by some
artifical hits.
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